Design of Sample Question Paper Mathematics, SA-I Class IX

Type of Question	Marks per question	Total No. of Questions	Total Marks
M.C.Q.	1	10	10
SA-I	2	8	16
SA-II	3	10	30
LA	4	6	24
TOTAL		34	80

Blue Print Sample Question Paper Mathematics, SA-I SA-1

Topic / Unit	MCQ	SA(I)	SA(II)	LA	Total
Number System	2(2)	2(4)	3(9)	8	7(15)
Algebra	2(2)	1(2)	2(6)	3(12)	8(22)
Geometry	6(6)	4(8)	3(9)	3(12)	16(35)
Coordinate Geometry	-	1(2)	1(3)	===	2(5)
Mensuration	-	ē.	1(3)	-	1(3)
TOTAL	10(10)	8(16)	10(30)	6(24)	34(80)

Note: Marks are within brackets.

Sample Question Paper Mathematics Class IX (SA-I)

Time: 3 to 3½ hours M.M.: 80

General Instructions

- i) All questions are compulsory.
- ii) The questions paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each section C comprises of 10 questions of 3 marks each and section D comprises of 6 questions of 4 marks each.
- iii) Question numbers 1 to 10 in section A are multiple choice questions where you are to select one correct option out of the given four.
- iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- v) Use of calculators is not permitted.

Section-A

				Ocoti	JII / \								
Quest	Question numbers 1 to 10 carry 1 mark each.												
1.	Decimal expansion of a rational number cannot be												
	(a)	non-terminati	ng		(B)	non-terminating and recurring							
	(C)	terminating			(D)	non-terminati	ng and	non-recurring					
2.	One o	f the factors of	(9x²-1)) - (1+3x)² is									
	(A)	3+x	(B)	3-x	(C)	3x-1	(D)	3x+1					
3.	Which	of the followir	ng need	ds a proof?									
	(A)	Theorem	(B)	Axiom	(C)	Definition	(D)	Postulate					
4.		erior angle of a se angles is	a triang	le is 110° and t	the two	interior oppos	ite angl	es are equal. Each					
	(A)	70°	(B)	55°	(C)	35°	(D)	110°					
5.	In ΔP	QR, if ∠R > ∠	Q, the	n									
	(A)	QR>PR	(B)	PQ>PR	(C)	PQ <pr< td=""><td>(D)</td><td>QR<pr< td=""></pr<></td></pr<>	(D)	QR <pr< td=""></pr<>					
6.	Two sides of a triangle are of lengths 7 cm and 3.5 cm. The length of the third side of triangle cannot be							he third side of the					
	(A)	3.6 cm	(B)	4.1 cm	(C)	3.4 cm	(D)	3.8 cm.					

- 7. A rational number between 2 and 3 is
 - (A) 2.010010001...
- (B)

- (C) 5/2
- (D) $4-\sqrt{2}$

- 8. The coefficient of x^2 in $(2x^2-5)(4+3x^2)$ is
 - (A) 2

(B)

- (C) 8
- (D) -7
- 9. In triangles ABC and DEF, $\angle A = \angle D$, $\angle B = \angle E$ and AB=EF, then are the two triangles congruent? If yes, by which congruency criterion?

√6

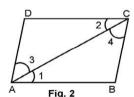
- (A) Yes, by AAS
- (B) No
- (C) Yes, by ASA (D)
- Yes, by RHS
- Two lines are respectively perpendicular to two parallel lines. Then these lines to each other are
 - (A) Perpendicular

(B) Parallel

(C) Intersecting

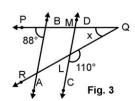
(D) incllined at some acute angle

SECTION - B

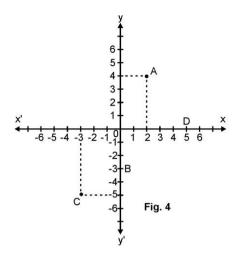

Question numbers 11 to 18 carry 2 marks each.

- 11. x is an irrational number. What can you say about the number x²? Support your answer with examples.
- 12. Let OA, OB, OC and OD be the rays in the anticlock wise direction starting from OA, such that \angle AOB = \angle COD = 100°, \angle BOC = 82° and \angle AOD = 78°. Is it true that AOC and BOD are straight lines? Justify your answer.

OR


In $\triangle PQR$, $\angle P=70^{\circ}$, $\angle R=30^{\circ}$. Which side of this triangle is the longest? Give reasons for your answer.

13. In Fig. 2, it is given that $\angle 1 = \angle 4$ and $\angle 3 = \angle 2$. By which Euclid's axiom, it can be shown that if $\angle 2 = \angle 4$ then $\angle 1 = \angle 3$.



How will you justify your answer, without actually calculating the cubes?

- 15. Evaluate $\left(\frac{-1}{27}\right)^{\frac{-2}{3}}$.
- 16. In Fig. 3, if ABIICD then find the measure of *x*.

- 17. In an isosceles triangle, prove that the altitude from the vertex bisects the base.
- 18. Write down the co-ordinates of the points A, B, C and D as shown in Fig. 4.

SECTION C

Question numbers 19 to 28 carry 3 marks each.

19. Simplify the following by rationalising the denominators

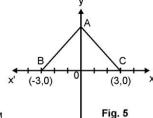
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}}$$

OR

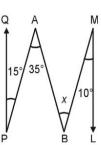
If $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = a - \sqrt{15}b$, find the values of a and b.

20. If $a=9-4\sqrt{5}$, find the value of $a-\frac{1}{a}$.

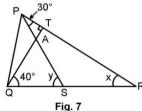
OR


If $x = 3+2\sqrt{2}$, find the value of $x^2 + \frac{1}{x^2}$

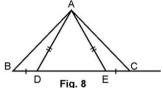
- 21. Represent $\sqrt{3.5}$ on the number line.
- 22. If (x-3) and $x \frac{1}{3}$ are both factors of $ax^2 + 5x + b$, show that a = b.
- 23. Find the value of $x^3+y^3+15xy-125$ when x+y=5.


OR

If a+b+c=6, find the value of $(2-a)^3+(2-b)^3+(2-c)^3-3(2-a)(2-b)(2-c)$


24. In Fig. 5. ABC is an equilateral triangle with coordinates of B and C as B(-3, 0) and C (3, 0)
Find the coordinates of the vertex A.

25. In Fig. 6 QPIIMLand other angles are shown. Find the values of x.



26. In Fig. 7, QT \perp PR, \angle TQR=40° and \angle SPR=30°. Find the values of x and y.

27. In Fig. 8, D and E are points on the base BC of a ΔABC such that BD=CE and AD=AE.

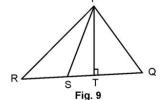
Prove that ΔABF ≃ ΔACD.

28. Find the area of a triangle, two sides of which are 18 cm and 10 cm and the perimeter is 42 cm.

SECTION D

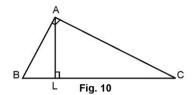
Question numbers 29 to 34 carry 4 marks each.

29. Let p and q be the remainders, when the polynomials $x^3+2x^2-5ax-7$ and $x^3+ax^2-12x+6$ are divided by (x+1) and (x-2) respectively. If 2p+q=6, find the value of a.

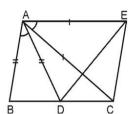

OR

Without actual division prove that $x^4-5x^3+8x^2-10x+12$ is divisible by x^2-5x+6 .

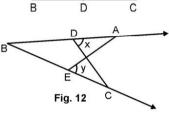
30. Prove that:


$$(x+y)^3 + (y+z)^3 + (z+x)^3 - 3(x+y)(y+z)(z+x) = 2(x^3+y^3+z^3-3xyz)$$

- 31. Factorize x¹²-y¹².
- 32. In Fig. 9, PS is bisector of \angle QPR; PT \perp RQ and \angle Q> \angle R. Show that \angle TPS = $\frac{1}{2}(\angle$ Q- \angle R).



OR


In \triangle ABC, right angled at A, (Fig. 10), AL is drawn perpendicular to BC. Prove that \angle BAL = \angle ACB.

33. In Fig. 11, AB=AD, AC=AE and ∠BAD = ∠CAE. Prove that BC = DE.

34. In Fig. 12, if $\angle x = \angle y$ and AB = BC, prove that AE = CD.

Marking Scheme Mathematics Class IX (SA-I)

Section A

1. (D) 2. (D) 3. (A) 4. (B) 5. (B)

6. (C) 7. (C) 8. (D) 9. (B) 10. (B) 1x10=10

SECTION B

11. x² may be irrational or may not be.

For example ; if $x=\sqrt{3}$, $x^2=3 \rightarrow rational$; if $x=2+\sqrt{3}$, $x^2=7+4\sqrt{3} \rightarrow irrational$ 1/2+1/2

1

1

2

12. No, AOC and BOD are not straight lines

OR

∠Q=180°-[70°+30°]=80° which is largest

13. By Euclid's I Axiom, which states.

["Things which are equal to the same thing are equal to one another"]

14. The LHS can be written as

$$\left(\frac{8}{15}\right)^3 + \left(\frac{-1}{3}\right)^3 + \left(\frac{-1}{5}\right)^3$$
 -----(i)

As
$$\frac{8}{15} - \frac{1}{3} - \frac{1}{5} = \frac{8 - 5 - 3}{15} = 0$$
 \(\frac{1}{2}\)

$$\therefore (i) = 3\left(\frac{8}{15}\right)\left(\frac{-1}{3}\right)\left(\frac{-1}{5}\right) = \frac{8}{75} = RHS$$

Justification: By the formula: If a+b+c=0, then a³+b³+c³=3abc ½

15.
$$\left[\left(\frac{-1}{27} \right)^{\frac{1}{3}} \right]^{-2} = \left(\frac{-1}{3} \right)^{-2}$$

$$=\frac{1}{\left(\frac{-1}{3}\right)^2} = \frac{1}{\frac{1}{9}} = 9$$

16.
$$\angle x = -70^{\circ} + 88^{\circ} = 18^{\circ}$$

$$(\because \angle QLM=180^{\circ}-110^{\circ}=70^{\circ} \text{ and AB IICD} \Rightarrow \angle PML=88^{\circ})$$

1/2

1/2

1

17. Let ABC be isosceles Δ in which AB=AC

Draw AD ⊥BC

 $_\Delta$'s ADB and ADC are congruent by RHS

i.e, Altitude AD bisects the base BC

SECTON-C

19.
$$\frac{2\sqrt{6}}{\sqrt{2} + \sqrt{3}} + \frac{6\sqrt{2}}{\sqrt{6} + \sqrt{3}} = \frac{2\sqrt{6}\left(\sqrt{2} - \sqrt{3}\right)}{(2) - (3)} + \frac{6\sqrt{2}\left(\sqrt{6} - \sqrt{3}\right)}{6 - 3}$$

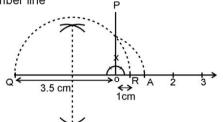
$$= 2\sqrt{18} - 2\sqrt{12} + 2\sqrt{12} - 2\sqrt{6} = 6\sqrt{2} - 2\sqrt{6}$$
 1+\frac{1}{2}

OR

LHS =
$$\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} = \frac{(\sqrt{5} + \sqrt{3})(\sqrt{5} + \sqrt{3})}{5 - 3}$$

$$= \frac{8 + 2\sqrt{15}}{2} = 4 + \sqrt{15} = a - \sqrt{15} b$$

20.
$$a = 9 - 4\sqrt{5} \Rightarrow \frac{1}{a} = \frac{1}{9 - 4\sqrt{5}} = \frac{9 + 4\sqrt{5}}{81 - 80} = 9 + 4\sqrt{5}$$


$$\therefore a - \frac{1}{a} = 9 - 4\sqrt{5} - 9 - 4\sqrt{5} = -8\sqrt{5}$$

$$x=3+2\sqrt{2} \Rightarrow x^2=9+8+12\sqrt{2}=17+12\sqrt{2}$$

$$\frac{1}{x^2} = \frac{1}{17 + 12\sqrt{2}} = \frac{17 - 12\sqrt{2}}{289 - 288} = 17 - 12\sqrt{2}$$

$$\therefore x^2 + \frac{1}{x^2} = 17 + 12\sqrt{2} + 17 - 12\sqrt{2} = 34$$

21. 'A' respresents $\sqrt{3.5}$ on the number line

1

3

22. Let
$$f(x) = ax^2 + 5x + b$$

$$f(3) = 0 \Rightarrow 9a+15+b=0 \Rightarrow 9a+b=-15-----(i)$$

$$f\left(\frac{1}{3}\right) = 0 \implies \frac{a}{9} + \frac{5}{3} + b = 0 \implies a + 9b = -15$$
 (ii)

$$(i) = (ii) \Rightarrow a=b$$
 1

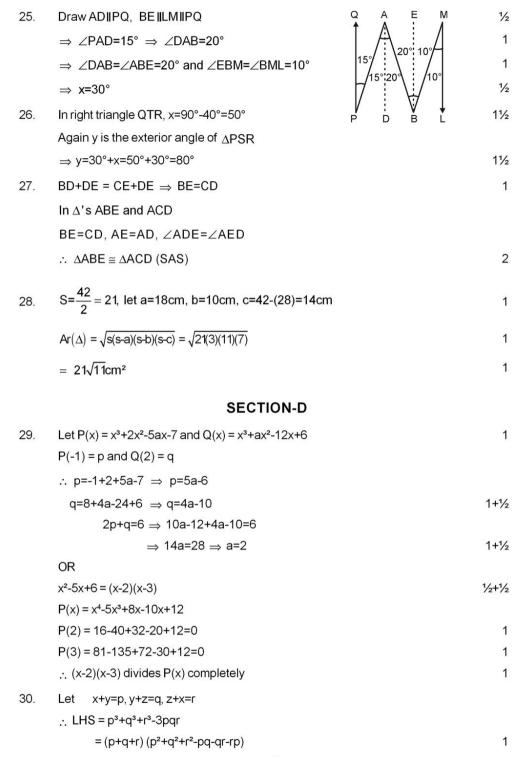
23. If
$$x+y=5 \Rightarrow x+y+(-5)=0$$
 1/2+1/2

$$\therefore (x)^3 + (y)^3 + (-5)^3 = 3(x)(y)(-5)$$

$$\Rightarrow$$
 $x^3+y^3+15xy=125$

$$\Rightarrow x^3 + y^3 + 15xy - 125 = 0$$

OR
$$a+b+c=6 \Rightarrow (2-a)+(2-b)+(2-c)=0$$
 1½


$$(2-a)^3+(2-b)^3+(2-c)^3=3(2-a)(2-b)(2-c)$$

$$\therefore (2-a)^3 + (2-b)^3 + (2-c)^3 - 3(2-a)(2-b)(2-c) = 0$$

AO bisects base BC

∴
$$OA^2 = AB^2 - OB^2 = 6^2 - 3^2 = 27 \Rightarrow OA = 3\sqrt{3}$$

$$\therefore$$
 Coordinates of A are $(0, 3\sqrt{3})$

Design of Sample Question Paper Mathematics, SA-I Class X

Type of Question	Marks per question	Total No. of Questions	Total Marks
M.C.Q.	1	10	10
SA-I	2	8	16
SA-II	3	10	30
LA	4	6	24
TOTAL		34	80

Blue Print Sample Question Paper Mathematics, SA-I Class X

Topic / Unit	MCQ	SA(I)	SA(II)	LA	Total
Number System	2(2)	1(2)	2(6)	-	5(10)
Algebra	2(2)	2(4)	2(6)	2(8)	8(20)
Geometry	1(1)	2(4)	2(6)	1(4)	6(15)
Trigonometry	4(4)	1(2)	2(6)	2(8)	9(20)
Statistics	1(1)	2(4)	2(6)	1(4)	6(15)
TOTAL	10(10)	8(16)	10(30)	6(24)	34(80)

Note: Marks are within brackets.

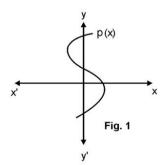
Sample Question Paper Mathematics Class X (SA-I)

Time: 3 to 3½ hours M.M.: 80

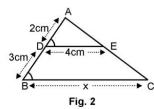
General Instructions

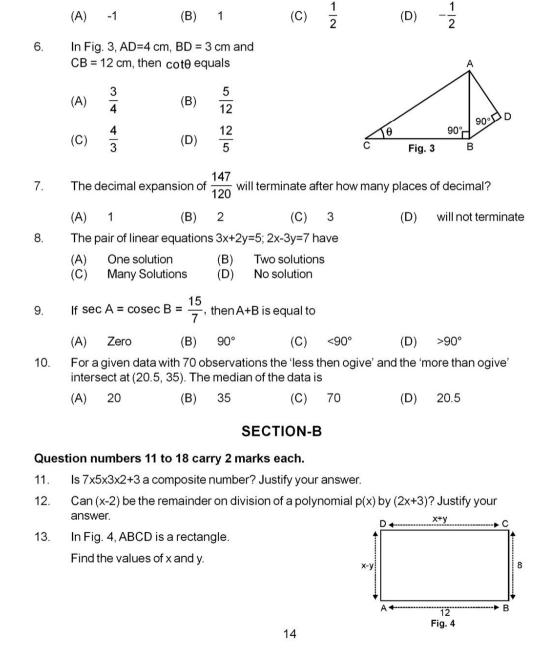
- i) All questions are compulsory.
- ii) The questions paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 10 questions of 1 mark each, Section B comprises of 8 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 6 questions of 4 marks each.
- iii) Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- iv) There is no overall choice. How ever, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- v) Use of calculators is not permitted.

Section-A


Question numbers 1 to 10 are of one mark each.

- 1. Euclid's Division Lemma states that for any two postive integers a and b, there exist unique integres q and r such that a=bq+r, where r must satisfy.
 - (A) I<r<b
- (B) 0<r<b
- (C) $0 \le r \le b$
- $(D) \qquad 0 < r \le b$


- 2. In Fig.1, the graph of a polynomial p(x) is shown. The number of zeroes of p(x) is
 - (A)
- (B)
- 1
- (C)


2

(D) 3

- 3. In Fig. 2, if DE BC, then x equals
 - (A) 6 cm |
- (B) 8 cm
- (C) 10 cm
- (D) 12.5 cm

If $\sin 3\theta = \cos (\theta - 6^{\circ})$, where (30) and (0-6°) are both acute angles, then

(C)

36°

(D)

30°

4.

5.

the value of θ is 18°

(B)

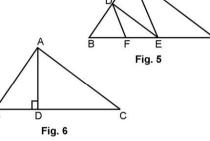
24°

Given that $\tan \theta = \frac{1}{\sqrt{3}}$, the value of $\frac{\csc^2\theta - \sec^2\theta}{\csc^2 + \sec^2\theta}$ is

(A)

14. If
$$7\sin^2\theta + 3\cos^2\theta = 4$$
, show that $\tan\theta = \frac{1}{\sqrt{3}}$

OR


If
$$\cot\theta = \frac{15}{8}$$
, evaluate $\frac{(2 + 2\sin\theta)(1 - \sin\theta)}{(1 + \cos\theta)(2 - 2\cos\theta)}$

15. In Fig. 5, DEIIAC and DFIIAE. Prove that

$$\frac{FE}{BF} = \frac{EC}{BE}$$

Prove that 2CA2=2AB2+BC2

17. The following distribution gives the daily income of 50 workers of a factory:

Daily income (in rupees)	100-120	120-140	140-160	160-180	180-200
Number of Workers	12	14	8	6	10

Write the above distribution as less than type cumulative frequency distribution.

18. Find the mode of the following distribution of marks obtained by 80 students:

Marks obtained	0-10	10-20	20-30	30-40	40-50
Number of students	6	10	12	32	20

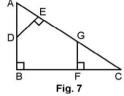
SECTION C

Question numbers 19-28 carry 3 marks each.

- Show that any positive odd integer is of the form 4q+1 or 4q+3 where q is a positive integer.
- 20. Prove that $\frac{2\sqrt{3}}{5}$ is irrational.

OR

Prove that
$$(5-\sqrt{2})$$
 is irrational.


21. A person can row a boat at the rate of 5km/hour in still water. He takes thrice as much time in going 40 km upstream as in going 40 km downstream. Find the speed of the stream.


15

In a competitive examination, one mark is awarded for each correct answer while $\frac{1}{2}$ mark is deducted for each wrong answer. Jayanti answered 120 questions and got 90 marks. How many questions did she answer correctly?

- 22. If α , β are zeroes of the polynomial x^2 -2x-15, then form a quadratic polynomial whose zeroes are (2α) and (2β) .
- 23. Prove that $(\csc\theta-\sin\theta)(\sec\theta-\cos\theta) = \frac{1}{\tan\theta+\cot\theta}$
- 24. If $\cos\theta + \sin\theta = \sqrt{2}\cos\theta$, show that $\cos\theta \sin\theta = \sqrt{2}\sin\theta$
- 25. In Fig. 7, AB \perp BC, FG \perp BC and DE \perp AC. Prove that \triangle ADE \sim \triangle GCF
- 26. ΔABC and ΔDBC are on the same base BC and on opposite sides of BC and O is the point of intersections of AD and BC.

Prove that
$$\frac{\text{area}(\triangle ABC)}{\text{area}(\triangle DBC)} = \frac{AO}{DO}$$

27. Find mean of the following frequency distribution, using step-deviation method:

Class	0-10	10-20	20-30	30-40	40-50
Frequency	7	12	13	10	8

OR

The mean of the following frequency distribution is 25. Find the value of p.

Class	0-10	10-20	20-30	30-40	40-50
Frequency	2	3	5	3	р

28. Find the median of the following data

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	5	3	4	3	3	4	7	9	7	8

SECTION D

Question numbers 29 to 34 carry 4 marks each

29. Find other zeroes of the polynomial $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$ if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

OR

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.

31. Prove that
$$\frac{\sec\theta + \tan\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{\cos\theta}{1 - \sin\theta}$$

OR

Evaluate
$$\frac{\sec \theta \csc(90^{\circ}-\theta) - \tan \theta \cot(90^{\circ}-\theta) + \sin^{2} 55^{\circ} + \sin^{2} 35^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 60^{\circ} \tan 70^{\circ} \tan 80^{\circ}}$$

- 32. If $\sec\theta + \tan\theta = p$, prove that $\sin\theta = \frac{p^2-1}{p^2+1}$
- 33. Draw the graphs of following equations:

$$2x-y = 1$$
, $x+2y = 13$ and

- (i) find the solution of the equations from the graph.
- (ii) shade the triangular region formed by the lines and the y-axis
- 34. The following table gives the production yield per hectare of wheat of 100 farms of a village:

Production yield in kg/hectare	50-55	55-60	60-65	65-70	70-75	75-80
Number of farms	2	8	12	24	38	16

Change the above distribution to more than type distribution and draw its ogive.

Marking Scheme **Mathematics** Class X (SA-I)

Section A

(C)

(A)

4

9.

(B)

5.

10.

(C)

3

8.

1.

6.

(C)

 $\cot \theta = \frac{15}{8}$ (given)

2.

7.

(B)

(C)

6. (D) 7. (C) 8. (A) 9. (B) 10. (D)
$$1 \times 10 = 10$$
SECTION B

11. $7 \times 5 \times 3 \times 2 + 3 = 3(7 \times 5 \times 2 + 1)$
 $= 3 \times 71 \dots (i)$

By Fundamental Theorem of Arithmetic, every composite number can be expressed as product of primes in a unique way, apart from the order of factors.

∴ (i) is a composite number

12. In case of division of a polynomial by another polynomial the degree of remainder (polynomial) is always less than that of divisor $\therefore (x-2)$ can not be the remainder when $p(x)$ is divided by $(2x+3)$ as degree is same 1 opposite sides of a rectangle are equal

∴ $x+y=12\dots(i)$ and $x-y=8\dots(ii)$
Adding (i) and (ii), we get $2x=20$ or $x=10$
 $2x=10$
 $2x=10$

SECTION C

19. Let a be a positive odd integer

15.

16.

17.

By Euclid's Division algorithm a=4q+r

Where q, r are positive integes and $0 \le r < 4$

∴ a = 4q or 4q+1 or 4q+2 or 4q+3 1/2

1

	But 4q and 4q+2 are both even	1/2
	\Rightarrow a is of the form 4q+1 or 4q+3	1
20.	Let $\frac{2\sqrt{3}}{5} = x$ where x is a rational number	
	$\Rightarrow 2\sqrt{3} = 5x \text{ or } \sqrt{3} = \frac{5x}{2} \dots (i)$	1
	As x is a rational number, so is $\frac{5x}{2}$	1/2
	∴ $\sqrt{3}$ is also rational which is a contradiction as $\sqrt{3}$ is an irrational	1
	$\therefore \ \frac{2\sqrt{3}}{5} \text{ is irrational}$	1/2
	OR Let $5-\sqrt{2} = y$, where y is a rational number $\begin{cases} \\ \\ \\ \end{cases}$ (i)	1
	As y is a rational number, so is 5-y	1/2
	∴ from (i), $\sqrt{2}$ is also rational which is a contradiction as $\sqrt{2}$ is irrational	1
	∴ 5-√2 is irrational	1/2
21.	Let the speed of stream be x km/hour ∴ Speed of the boat rowing	
	upstream = (5-x) km/hour downstream = (5+x) km/hour	1
	According to the question,	
	$\frac{40}{5-x} = \frac{3x40}{5+x} \implies x = 2.5$	1+1/2
	∴ Speed of the stream = 2.5 km/hour OR	1/2
	Let the number of correct answers be x	
	∴ wrong answers are (120-x) in number	1/2
	$\therefore x - \frac{1}{2}(120 - x) = 90$	1

$$\Rightarrow \frac{3x}{2} = 150 \Rightarrow x = 100$$

∴ The number of correctly answered questions = 100 1/2

22.
$$p(x) = x^2-2x-15$$
 ...(i)

As α , β are zeroes of (i), $\Rightarrow \alpha + \beta = 2$ and $\alpha\beta = -15$

zeroes of the required polynomial are 2α and 2β

∴ sum of zeroes =
$$2(\alpha+\beta)=4$$

Product of zeroes = $4(-15)=-60$

∴ The required polynomial is x²-4x-60.

23. LHS can be written as
$$\left(\frac{1}{\sin\theta} - \sin\theta\right) \left(\frac{1}{\cos\theta} - \cos\theta\right)$$

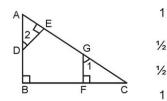
$$=\frac{(1-\sin^2\theta)(1-\cos^2\theta)}{\sin\theta\cos\theta}=\sin\theta\cos\theta$$

$$= \frac{\sin\theta \cos\theta}{\sin^2\theta + \cos^2\theta} = \frac{1}{\frac{\sin^2\theta}{\sin\theta\cos\theta} + \frac{\cos^2\theta}{\sin\theta\cos\theta}}$$

$$= \frac{1}{\tan\theta + \cot\theta}$$

24.
$$\sin\theta + \cos\theta = \sqrt{2}\cos\theta \implies \sin\theta = (\sqrt{2} - 1)\cos\theta$$

or
$$\sin\theta = \frac{\left(\sqrt{2} - 1\right)\left(\sqrt{2} + 1\right)}{\left(\sqrt{2} + 1\right)}\cos\theta$$


or
$$\sin\theta = \frac{\cos\theta}{\sqrt{2} + 1} \implies \cos\theta - \sin\theta = \sqrt{2}\sin\theta$$

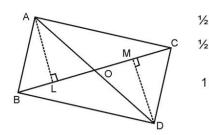
25.

$$\angle A+\angle C=90^{\circ}$$

Also $\angle A+\angle 2=90^{\circ} \Rightarrow \angle C=\angle 2$

Similarly, ∠A=∠1

.: Δ's ADE and GCF are equiangular



1/2

26. Draw AL \perp BC and DM \perp BC A's AOL and DOM are similar

$$\therefore \frac{AO}{DO} = \frac{AL}{DM}$$

$$\frac{\text{Area}(\Delta ABC)}{\text{Area}(\Delta BCD)} = \frac{\cancel{1} \cancel{BC} \cdot AL}{\cancel{1} \cancel{BC} \cdot DM} = \frac{AO}{DO}$$

27. Class 0-10 10-20 30-40 40-50 20-30 Class marks (x,) 5 15 25 35 45 Frequency (f.) 12 13 10 -2 -1 0 1 2 f.d. -14 -12 0 10 16

$$\sum f_i = 50, \sum f_i d_i = 0$$

$$\overline{x} = A.M + \frac{\sum f_i d_i}{\sum f_i} \times 10 = 25 + 0 = 25.0$$

OR

Class	0-10	10-20	20-30	30-40	40-50
Frequency (fi)	2	3	5	3	р
Class mark (x _i)	5	15	25	35	45
fixi	10	45	125	105	45p

$$\sum f_i = 13+p, \sum f_i x_i = 285+45p$$

Mean = 25 (given)

∴
$$25x(13+p) = 285+45p$$

⇒ $20p = 40$ ⇒ $p=2$

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 28. Class 5 3 Frequency 3 4 3 4 8 1/2 5 8 12 15 18 22 29 38 45 53 Frequency

1

1

1/2

1/2+1

Median = I+
$$\frac{\left(\frac{n}{2} - cf\right)}{f} xh$$

$$= 60 + \left(\frac{26.5 - 22}{7}\right) \times 10 = 66.43$$

SECTION D

29. $p(x) = 2x^4 + 7x^3 - 19x^2 - 14x + 30$

If two zeroes of p(x) are $\sqrt{2}$ and $-\sqrt{2}$

$$\therefore (x+\sqrt{2})(x-\sqrt{2}) \text{ or } x^2-2 \text{ is a factor of } p(x)$$

$$p(x) \div (x^2-2) = \left\lceil 2x^4 + 7x^3 - 19x^2 - 14x + 30 \right\rceil \div (x^2-2) = 2x^2 + 7x - 15$$

$$=(2x-3)(x+5)$$
 1/2

∴ other two zeroes of p(x) are
$$\frac{3}{2}$$
 and -5

30. Correctly stated given, to prove, construction and correct figure
$$4x\frac{1}{2}$$

OR

Correctly stated given, to prove, construction and correct figure
$$4x\frac{1}{2}$$

correct proof 2

31. LHS =
$$\frac{\sec\theta + \tan\theta - 1}{\tan\theta - \sec\theta + 1} = \frac{\sec\theta + \tan\theta - (\sec^2\theta - \tan^2\theta)}{\tan\theta - \sec\theta + 1}$$

$$=\frac{\left(\sec\theta+\tan\theta\right)\left[1-\sec\theta+\tan\theta\right]}{\left(1-\sec\theta+\tan\theta\right)}=\sec\theta+\tan\theta=\frac{1+\sin\theta}{\cos\theta}$$
 1+1

$$=\frac{(1+\sin\theta)(1-\sin\theta)}{(1-\sin\theta)\cos\theta}=\frac{\cos\theta}{1-\sin\theta}$$

OR

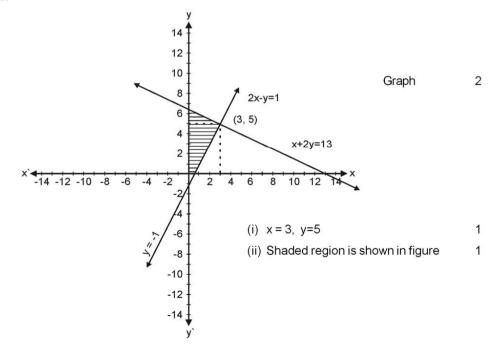
$$cosec(90^{\circ} - \theta) = sec \theta, cot(90^{\circ} - \theta) = tan \theta, sin 55^{\circ} = cos 35^{\circ}$$

 $tan 80^{\circ} = cot 10^{\circ}, tan 70^{\circ} = cot 20^{\circ}, tan 60^{\circ} = \sqrt{3}$

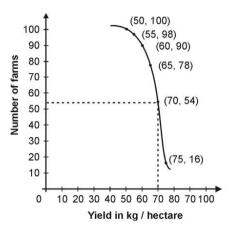
Given Expression becomes
$$\frac{\left(\sec^2\theta-\tan^2\theta\right)+\left(\sin^235^\circ+\cos^235^\circ\right)}{\tan 10^\circ\cot 10^\circ\tan 20^\circ\cot 20^\circ\sqrt{3}}$$

$$=\frac{1+1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

32.
$$\sec \theta + \tan \theta = p \implies \frac{1 + \sin \theta}{\cos \theta} = p$$
 1/2


$$\Rightarrow \left(\frac{1+\sin\theta}{\cos\theta}\right)^2 = p^2 \Rightarrow \frac{\left(1+\sin\theta\right)^2 - \cos^2\theta}{\left(1+\sin\theta\right)^2 + \cos^2\theta} = \frac{p^2-1}{p^2+1}$$

$$\operatorname{cr} \frac{(1-\cos^2\theta)+\sin^2\theta+2\sin\theta}{2+2\sin\theta} = \frac{p^2-1}{p^2+1}$$


or
$$\frac{2\sin\theta(1+\sin\theta)}{2(1+\sin\theta)} = \frac{p^2-1}{p^2+1}$$

$$or \sin\theta = \frac{p^2-1}{p^2+1}$$

33.

Classes	Frequency	Cumulative Frequency	(More than type)
50-55	2	50 or more than 50	100
55-60	8	55 or more than 55	98
60-65	12	60 or more than 60	90
65-70	24	65 or more than 65	78
70-75	38	70 or more than 70	54
75-80	16	75 or more than 75	16

