The study of Botany, dealing with the structure, function, classification and evolution of plants, has inspired many great minds. Plants are unique as solar energy converters and providers of energy for all heterotrophic organisms. It is fascinating to study the wide spectrum of reproductive processes in algae, fungi, lichens, bryophytes, gymnosperms, and flowering plants. A student of Botany has been learning these aspects together with taxonomy, anatomy, plant pathology, plant breeding, microbiology, plant physiology, plant biochemistry, ecology, cytology, genetics, cytogenetics, molecular biology and plant biotechnology.

Renewing and updating of the curriculum is the essential ingredient of any vibrant academic system. Curriculum with necessary additions and changes are introduced in it from time to time, with a prime objective to maintain updated curriculum and also providing therein inputs to take care of paced development in the knowledge of the subject. Revising the curriculum should be a continuous process to provide an updated education to the students by and large. The last few decades have ushered in new advances, not only in general biology, but also in Botany, which now need to be incorporated in the Botany curricula.

The objectives of curriculum development are listed below:

1. To update course contents by introducing (in good measure) recent developments in plant sciences.

2. To prepare the curriculum as such that it can attract, enthuse, sustain and promote the interest of learners for selecting Botany and allied disciplines as their career and make them realize that their choice is intellectually rewarding.

3. To ensure that the curricula are not overloaded. Minimizing the descriptive aspects and eliminating repetition of contents between undergraduate and post graduate syllabi is the major objective.

4. To provide the students of Bachelor’s programme in Botany, an opportunity to opt one or more courses in allied disciplines to help them pursue specialization / research in interdisciplinary areas.

5. To make provision for improvement in the quality of laboratory and field work in the lack of which the students are not able to appreciate the beauty and variety of form, structure, function and ecological significance of plants and their biological services.

6. To increase the awareness of young learners about the abuse to which plants have been subjected by human greed, and to expertise in exploration, identification and evaluation of plants, conservation of nature and natural resources and in the protection of endangered plant species and other biota dependent on them.
7. To provide for the mobility of students among institutions and different disciplines so as to acquaint with the latest trends and techniques adopted in the field of applied botany.

8. Each course shall be assigned credits depending on the quantum of work required to be done in each semester. The formula for assigning credits to a course is based on the number of contact hours per week.

9. Evaluation for semester based programmes shall be done through Continuous Assessment (C.A) and Semester End Examinations (S.E.E). The weightage for the two types of evaluations: C.A: 30%, S.E.E: 70%, Total: 100%. The evaluation for Continuous Assessment (C.A.) shall be on an internal basis and external for Semester End Examinations (S.E.E.).
SCHEME OF EXAMINATION
AND
COURSES OF STUDY
BACHELOR OF SCIENCE (B.SC.)
BOTANY
First Semester – Sixth Semester
(3-year programme)

I Semester Examination November 2009
II Semester Examination April 2010
III Semester Examination November 2010
IV Semester Examination April 2011
V Semester Examination November 2011
VI Semester Examination April 2012

Syllabus applicable for the students seeking admission to B.Sc. (Botany)
in the academic year 2009-10
INTERNATIONAL COLLEGE FOR GIRLS, JAIPUR
DEPARTMENT OF BOTANY
Bachelor of Science
Syllabus based on the Semester System
(Theory and Practical)

First Semester:
Bot. 101: Diversity of Microbes, Algae and Bryophytes
Bot. 102: Lichens, Fungi and Plant Pathology
Bot. 103: Practicals based on Bot.101 and 102

Second Semester:
Bot. 201: Cell and Molecular Biology
Bot. 202: Pteridophytes, Gymnosperms and Palaeobotany
Bot. 203: Practicals based on Bot. 201 and 202

Third Semester:
Bot. 301: Genetics and Plant Breeding
Bot. 302: Environmental Studies and Plant Conservation
Bot. 303: Practicals based on Bot. 301 and 302

Fourth Semester:
Bot. 401: Plant Anatomy and Embryology
Bot. 402: Plant Systematics and Economic Botany
Bot. 403: Practicals based on Bot. 401 and 402

Fifth Semester:
Bot. 501: Plant Physiology and Metabolism
Bot. 502: Plant Biochemistry
Bot. 503: Practicals based on 501 and 502

Sixth Semester:
Bot. 601: Plant Biotechnology
Bot. 602: Applied Botany
Bot. 603: Practicals based on 601 and 602
<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Paper</th>
<th>Contact Hrs. Per semester</th>
<th>Credit</th>
<th>Max. marks</th>
<th>Min. marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 101</td>
<td>Diversity of Microbes, Algae and Bryophytes</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 102</td>
<td>Lichens, Fungi and Plant Pathology</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 103</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total Credits for I Semester</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>BOT 201</td>
<td>Cell and Molecular Biology</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 202</td>
<td>Genetics and Plant Breeding</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 203</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total Credits for II Semester</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>BOT 301</td>
<td>Pteridophytes, Gymnosperms and Paleobotany</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 302</td>
<td>Environmental studies and Plant Conservation</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>BOT 303</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Total Credits for III Semester</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Semester IV

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Paper</th>
<th>Contact Hrs.</th>
<th>Credit</th>
<th>Max. marks</th>
<th>Min. marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 401</td>
<td>Plant Anatomy and Embryology</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 402</td>
<td>Plant Systematics and Economic Botany</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 403</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credits for IV Semester: 8

Semester V

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Paper</th>
<th>Contact Hrs.</th>
<th>Credit</th>
<th>Max. marks</th>
<th>Min. marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 501</td>
<td>Plant Physiology and Metabolism</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 502</td>
<td>Plant Biochemistry</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 503</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credits for V Semester: 8

Semester VI

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Paper</th>
<th>Contact Hrs.</th>
<th>Credit</th>
<th>Max. marks</th>
<th>Min. marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT 601</td>
<td>Plant Biotechnology</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 602</td>
<td>Applied Botany</td>
<td>Theory</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>BOT 603</td>
<td>Practical</td>
<td>Practical</td>
<td>60</td>
<td>4</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

Total Credits for VI Semester: 8

Total Credits: 48
B.Sc. Botany
Scheme of Examination

<table>
<thead>
<tr>
<th>Semester</th>
<th>Paper code</th>
<th>Credits</th>
<th>Contact Hrs/week</th>
<th>Maximum Marks</th>
<th>Minimum Marks</th>
<th>Continuous Assessment 30 %</th>
<th>Semester End Exam (70 %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>BOT– 101</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 102</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 103</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>II</td>
<td>BOT– 201</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 202</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 203</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>III</td>
<td>BOT– 301</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 302</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 303</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>IV</td>
<td>BOT– 401</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 402</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 403</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>V</td>
<td>BOT– 501</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 502</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 503</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>VI</td>
<td>BOT– 601</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 602</td>
<td>3</td>
<td>3</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>BOT– 603</td>
<td>2</td>
<td>4</td>
<td>100</td>
<td>36</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

INTERNAL ASSESSMENT

<table>
<thead>
<tr>
<th>C.A. Test</th>
<th>III comp.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mks</td>
<td></td>
<td>30 mks</td>
</tr>
<tr>
<td>5 mks</td>
<td>Class Room Interaction</td>
<td></td>
</tr>
<tr>
<td>5 mks</td>
<td>Home Assignment (5 mks)</td>
<td></td>
</tr>
<tr>
<td>5 mks</td>
<td>Attendance (5 mks)</td>
<td></td>
</tr>
</tbody>
</table>

Scheme of Evaluation for Continuous Assessment (Practical)

<table>
<thead>
<tr>
<th>Test</th>
<th>Practical Record</th>
<th>III comp.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mks</td>
<td>10 mks</td>
<td>Viva Voce (5 mks)</td>
<td>30 mks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attendance (5 mks)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Time duration of Internal tests will be 45 minutes
- Time duration of SEE will be three hours
- Passing percentage in continuous assessment and semester end exam is 36 %.
B.Sc. Semester I
PAPER I
BOT 101: Diversity of Microbes, Algae and Bryophytes

Objectives- Exploration, identification of microbes and lower plants.

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E 70%)

Unit I
Viruses and Bacteria: General characters, structure, nutrition, reproduction and economic importance, viroids, virions, general account of Cyanobacteria (Oscillatoria, Nostoc). Scope and application of microbes in agriculture, industry, food, pollution and biological control of pests. (8 Hours)

Unit II
Algae I: General characters, classification, thallus organization, pigments and reserve food material, reproduction, algal biofertilizers, algae used in industry, eutrophication. (5 Hours)

Unit III
Algae II: General characters, classification, economic importance, important features and life history of:
Chlorophyceae: Volvox
Xanthophyceae: Vaucheria
Phaeophyceae: Ectocarpus
Rhodophyceae: Polysiphonia (12 Hours)

Unit IV
Bryophytes I: General characters, classification, distribution of bryophytes in India, alternation of generation, evolutionary trends in thallus and sporogonium organization, economic importance of bryophytes. (7 Hours)

Unit V
Bryophytes II: Morphology, distribution, structure, reproduction, classification, life history and economic importance of
Hepaticopsida: Marchantia
Anthocerotopsida: Anthoceros
Bryopsida: Funaria (13 Hours)

Essential Books for BOT 101:

Suggested Readings

- Vasishtha, PC. Algae Rev. 9th. S. Chand & Co., Delhi.

Laboratory Readings

B.Sc. Semester I
Paper II
BOT 102: Lichens, Fungi and Plant Pathology

Objectives- To facilitate study of a wide spectrum of plant disease, cause, symptom and control measures.

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Unit I
Lichens: General characters, structure, reproduction and economic importance.
Mycoplasma: General characters, structure, reproduction and economic importance.
Phytoplasma: General characters, structure, reproduction and economic importance.

(5 Hours)

Unit II
Fungi I: General characters, classification and economic importance, parasexual cycle, heterothallism, mushroom cultivation, poisonous fungi, fungi in medicine.

(5 Hours)

Unit III
Fungi II: General characters, classification and economic importance, life history of –
Mastigomycotina- Sclerospora
Zygomycotina-Rhizopus
Ascomycotina- Saccharomyces, Aspergillus,
Basidiomycotina- Puccinia, Ustilago
Deuteromycotina- Alternaria

(15 Hours)

Unit IV
Plant Pathology I : History and scope of plant pathology, general account of diseases caused by plant pathogens, significance of plant diseases, pathogen attack and defence mechanisms.

(5 Hours)

Unit V
Plant Pathology II : Symptomatology, causal organism, disease cycle and control of the following plant diseases: Tobacco mosaic virus, bhindi yellow mosaic, little leaf of brinjal, citrus canker, white rust of crucifers, green ear disease of bajra, late blight of potato, rust and smut of wheat.

(15 Hours)
Essential Books for BOT.102

Suggested Readings

- Bridge, P; Moore, DR and Scott, PR. 1998. Information Technology, Plant Pathology and Biodiversity. CAB International, U.K.

Suggested Laboratory Readings

B.Sc. Semester I
PAPER III
BOT103: Practical syllabus based on BOT. 101 and 102

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Suggested exercises:

- Major contributors in the field of microbiology- Pasteur, Leuwenhock, Koch, Metchinkoff, Paul Ehrlich, Flemming.
- Staining of different types of bacteria.
- Electron micrograph of bacteriophages.
- Study of *Spirulina*
- Field study of eutrophication by algae.
- Microscopic preparation and study of the following algal members: *Nostoc, Oscillatoria, Volvox, Chara, Vaucheria, Ectocarpus, Polysiphonia*.
- Study of external morphology and microscopic preparation of the following Bryophytes: *Marchantia, Porella, Anthoceros, Funaria*.
- Study of mushroom cultivation.
- Microscopic preparation and study of *Albugo, Sclerospora, Rhizopus, Saccharomyces, Aspergillus, Puccinia, Ustilago*.
- Study of specimens of different types of lichens.
- Study of some locally available plant diseases caused by viruses, mycoplasma, bacteria and fungi in field and laboratory viz. Yellow Vein Mosaic of Bhindi, Tobacco Mosaic Virus, Little Leaf of Brinjal, Citrus Canker, White Rust of Crucifers, Green Ear Disease of Bajra, Late Blight of Potato, Rust and Smut of Wheat.
- Study of permanent specimens and slides of the all the above mentioned course material.
B.Sc. Semester II
PAPER I
BOT 201: Cell and Molecular Biology

Objectives: To study the molecular aspects of cell structure and functions in plant cell.

Credit: 3

Marks 100
Contact Hours/Semester: 45
(C.A.30% : S.E.E70%)

UNIT I
Cell envelopes and organelles: Cell wall: structure, plasma membrane: structure, models and functions, ion carriers, channels and pumps, structure and function of chloroplast, mitochondria, golgi bodies, endoplasmic reticulum, lysosomes, plasmodesmata, vacuoles, ribosomes, biogenesis of chloroplast and mitochondria. Ultrastructure of nucleus, nuclear membrane, nucleolus, nuclear pores.
(10 Hours)

UNIT II
Chromosome Organization: Chromosome structure and packaging of DNA, molecular organization of centromere and telomere, specialized type of chromosome: Polytene and lambrush chromosome, B chromosomes, karyotype analysis, Heterochromatin and Euchromatin, Barr bodies.
(10 Hours)

UNIT III
Cell Division: Amitosis, Mitosis, Meiosis, Cell cycle .
(8 Hours)

UNIT IV
DNA-The Genetic Material: DNA structure, A, B and Z forms, replication, DNA damage and repair, DNA methylation, transposons, satellite and repetitive DNA, transcription of DNA, transcription factors, RNA processing, translation .
(10 Hours)

UNIT V
RNA-The Genetic Material: RNA structure and its types- r RNA , mRNA , and tRNA , Biogenesis and structure of different types of RNA, RNA editing, nucleolus and ribosomal RNA genes.
(7 Hours)
Essential Books for BOT 201

- Introductory Cell Biology. Veer Bala Rastogi.

Suggested Readings

Suggested Laboratory Readings

- Protein Expression: A Practical Approach. Ed. Higgins, SJ and Hames, BD. Oxford University Press
B.Sc. Semester II
Paper II
BOT 202: Pteridophytes, Gymnosperms and Palaeobotany

Objectives: To study the structural, developmental and economic aspects of Pteridophytes and Gymnosperms.

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Unit I
Pteridophytes I: General characters, classification, telome theory, stelar system, apogamy, apospory, origin of seed habit and heterospory, leptosporangiate and eusporangiate type of development

(9 Hours)

Unit II
Pteridophytes II: Important characters, classification, structure, economic importance and life history of:
Psilopsida: *Psilotum*
Lycopsida: *Selaginella*
Sphenopsida: *Equisetum*
Pteropsida: *Marsilea*

(9 Hours)

Unit III
Gymnosperm I: General characters, classification, evolution of Gymnosperms, Distribution in India, Affinities of gymnosperms with Angiosperms and Pteridophytes, Economic importance.

(9 Hours)

Unit IV
Gymnosperm II: Important characters, classification, structure, economic importance and life history of:
Cycadopsida: *Cycas*
Coniferopsida: *Pinus*
Gnetopsida: *Ephedra*

(9 Hours)
Unit V
Palaeobotany: Fossilization, geological time scale, fossil pteridophytes: *Rhynia*, *Lepidodendron*, fossil gymnosperms: *Glossopteris*, *Williamsonia*

(9 Hours)
Essential Books for BOT 202

Suggested Readings

Suggested Laboratory Readings

- Santra, SC; Chatterjee, TP and Das, AP. College Botany Practical Vol. 1. New Central Book Agency (P) Ltd., Kolkata
B.Sc. Semester II
PAPER III
BOT 203: Practical syllabus based on BOT 201 and 202

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Suggested Exercises

- Study of electron micrographs of various cell organelles- cell ultrastructure, specialized chromosomes, nucleus, golgi body, endoplasmic reticulum.
- Study of Mitosis and Meiosis.
- Study of Permanent slides and specimens in the above mentioned course material.
- Microscopic preparation and study of different types of steles.
- Microscopic double stained preparation and anatomical study of the following pteridophytes- *Psilotum, Lycopodium, Selaginella, Equisetum* and *Marsilea*.
- Microscopic preparation and study of single stained temporary slides of the cones of *Lycopodium, Selaginella, Equisetum* and sporocarp of *Marsilea*.
- Microscopic double stained preparation of stem of *Pinus, Ephedra*, T.S. leaf of *Cycas* and needle of *Pinus*, T.S. of normal and coralloid root of *Cycas*.
- Microscopic preparation male cone of *Pinus*, male and female cone of *Ephedra*, male cone and megasporophyll of *Cycas*.
- Microscopic examination of fossil slides/ specimen/ photographs of *Rhynia, Lepidodendron, Glossopteris, Williamsonia*.
B.Sc. Semester III
PAPER I
BOT 301: Genetics and Plant Breeding

Objectives: To study the mendelian as well as modern aspects of genetics with Plant Breeding.

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

UNIT I
Genetic Inheritance: Mendelism, laws of inheritance, gene interactions, linkage and crossing over, multiple alleles, sex determination, sex linked, sex influenced, sex limited traits.

(8 Hours)

UNIT II

(10 Hours)

UNIT III
Gene expression: Gene fine structure, introns and their role in genetics, regulation of gene expression in prokaryotes and eukaryotes, lac operon and tryptophan operon, lytic and lysogenic cycle in bacteriophages.

(10 Hours)

UNIT IV
Extra nuclear genome: Genetics of mitochondrial and chloroplast DNA- structure, functions and inheritance, plasmids and episomes; maternal effects and cytoplasmic inheritance, cytoplasmic male sterility.

(8 Hours)

UNIT V
Plant Breeding: Methods of plant breeding, selection (mass, pureline and clonal), pedigree analysis, acclimatization, hybridization, heterosis and inbreeding depression.

(8 Hours)
Essential Books for BOT 301

- Atherlt, AG; Girton, JR and McDonald, JF. 1999. The Science of Genetics. Saunders College Publishing. Fort Worth, USA

Suggested Readings

Suggested Laboratory Readings

B.Sc. Semester III
Paper II
BOT. 302: Environmental Studies and Plant Conservation

Objectives: The course aims studying environment and to aware the students about conservation.

Credits: 3
Contact Hours/ Semester: 45
Marks: 100
(C.A30%; S.E.E70%)

Unit I
Ecology: Definition and scope, interaction of climatic, topographic, edaphic and biotic factors, constituting the environment components, Ecosystem: Introduction, types of ecosystem, structure and function of ecosystem, biotic and abiotic components, food chain, food web, ecological pyramids, energy flow, productivity

(10 Hours)

Unit II
Community ecology: Definition and brief history, characteristics of a community, ecological succession, composition, structure, origin and development of a community

(9 Hours)

Unit III
Plant adaptation: Soil-Plant Atomosphere Continuum (SPAC), ecological groups of plants:
Hydrophytes- Eichhornia, Hydrilla
Xerophytes: Casuarina, Nerium
Halophytes: Rhizophora

(8 Hours)

Unit IV
Pollution and climate change: Air, Water and Soil Pollution: sources, effects on plants and ecosystems, control measures, greenhouse effect, ozone depletion, global warming, public awareness, chipko movement.

(9 Hours)

Unit V
Conservation: Ex-situ and in-situ conservation, endangered plants, Red data book, botanical gardens, afforestation, elementary knowledge of institutions related to plant conservation: Botanical Survey of India (BSI), National Bureau of Plant Genetic
Resources (NBPGR), Council of Scientific and Industrial Research (CSIR), Department of Biotechnology (DBT), Indian Council of Agricultural Research (ICAR)

(9 Hours)
Essential Books recommended for BOT 302

Suggested Readings

- Chandel, KPS; Shukla, G and Sharma, N. 1996. Biodiversity in Medical and Aromatic Plants in India: Conservation and Utilization. NBPGR, New Delhi.

Suggested Laboratory Readings

B.Sc. Semester III
PAPER III
BOT 303: Practical Syllabus Based on BOT 301 and 302

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Suggested exercises

- Study of Barr bodies.
- Study of B chromosomes
- Study of mitosis in onion root tips.
- Calculation of mitotic index.
- Study of meiosis in onion flower buds.
- Study of monohybrid and dihybrid crosses in the field and working on the numerical problems related to them.
- To find the frequency of herbaceous species by quadrat method.
- To find the density of herbaceous species by quadrat method.
- To find the minimum size of quadrat.
- Study of adaptive modifications in plants by specimens/slide preparation/photographs in Hydrophytes- *Eichhornia, Hydrilla*
 Xerophytes- *Casuarina, Nerium*
 Halophytes- *Rhizophora*
- Soil analysis:
 a) Study of soil texture.
 b) Study of soil pH.
 c) Study of soil water holding capacity.
 d) Study of soil moisture percentage
 e) Testing of soil for the presence of carbonate, nitrate, inorganic salts and replaceable bases.
B.Sc. Semester IV
PAPER I
BOT 401: Plant Anatomy and Embryology

Objectives: The course aims studying not only morphology, structure and development of flowering plants but their practical and experimental aspects also.

Credits: 3
Contact Hours/ Semester: 45
Marks: 100
(C.A30%; S.E.E70%)

UNIT I
Plant anatomy: Simple and complex permanent tissues; Internal structure of primary root, primary stem and leaf, differentiation of secondary tissues in roots and stem, general account of their structure and their roles, anomalous secondary growth, cambium, periderm, lenticels, secretory ducts and lactifers.

(10 Hours)

UNIT II
Plant Development: Histological organization of shoot apical meristem and root apical meristem, origin and development of leaf, types of root system, origin of lateral roots, root hair; branching and its patterns.

(8 Hours)

UNIT III
Embryology I: Structure of anthers, microsporogenesis, role of tapetum, pollination, pollen germination, pollen tube growth. Megasporegenesis, ovule development, types of ovules, development and types of embryo sacs, embryo sac cells, and double fertilization, in vitro fertilization.

(8 Hours)

UNIT IV
Embryology II: Endosperm: structure, types and development, Embryogenesis: the zygote, laws of embryogenesis, embryo development in dicotyledons and monocotyledons, nutrition of embryo, polyembryony, apomixis.

(11 Hours)

UNIT V
Seed: Development and structure of seed in monocotyledons and dicotyledons, suspended animation, seed dormancy (primary and secondary, causes of seed dormancy, seed as a unit of replenishment.

(8 Hours)
Essential Books for 401

- Cutter, EG 1971, Plant Anatomy: Experiment and Interpretation Part II, Organs, Edward Arnold, London

Suggested Readings

Laboratory Readings

B.Sc. Semester IV
PAPER II
BOT 402: Plant Systematics and Economic Botany

Objectives: The objective of this course is to identify thrust areas of modern taxonomy without shifting focus from the traditional ones. With biodiversity and its conservation being areas of prime concern, the identification of plants becomes all the more important.

Credits: 3
Contact Hours/ Semester: 45
Marks: 100
(C.A30%; S.E.E70%)

UNIT I
Classification: Systems of classification- artificial systems, natural system, phylogenetic system; salient features of the system proposed by Linnaeus, Bentham and Hooker, Engler and Prantl.

(10 Hours)

UNIT II
Botanical Nomenclature: Historical account of nomenclature, ICBN, Principles, rules and recommendations; Principle of priority, type concept, nomenclature of taxa according to their categories, valid and effective publication, author citation, change of rank, nomenclature of hybrids and cultivated plants.

(10 Hours)

UNIT III
Angiosperm Taxonomy-I: Aims and fundamental components (alpha and omega taxonomy) of identification, taxonomic literature, herbaria and botanical gardens. Keys for identification. Study of the following families: Ranunculaceae, Brassicaceae, Malvaceae, Rutaceae, Papillionaceae, Ceasalpiniaceae, Mimosaceae, Apiaceae,

(8 Hours)

UNIT IV
Angiosperm Taxonomy-II: Study of the following families: Asteraceae, Apocyanaceae, Asclepiadaceae, Solanaceae, , Acanthaceae, Lamiaceae, Euphorbiaceae, Liliaceae and Poaceae.

(8 Hours)
UNIT V
Economic Botany: Origin, cultivation and uses of wheat, rice and maize, General account of medicinal plants: *Rauwolfia, Commiphora, Cinchona, Ashwagandha, spices* and condiments, oil and timber yielding plants; commercial crops like tea, rubber and sugarcane.

(9 Hours)
Essential Books for BOT 402

Suggested Readings

Laboratory Readings

B.Sc. Semester IV
Paper III
BOT 403: Practical based on BOT 401 and 402

Suggested exercises:

- To study the body plan of a dicotyledonous plant.
- Study of primary and secondary growth in root and stem of monocots and dicots by section cutting and permanent slides.
- Study of internal structure of dicot and monocot leaves. Study of structure and development of stomata.
- Field study of various life forms exhibited by flowering plants and study of diversity in leaf shape, size and other foliar features.
- To study monopodial and sympodial branching.
- L.S. shoot tip to study cytohistological zonation and origin of leaf buttresses.
- L.S. root tip to study different primordial and structure of root cap and root hair.
- Study of anomalous secondary growth in Boerhaavia, Bignonia, Bougainvillea, Leptadenia, Salvadoria, Nyctanthes and Dracaena.
- Structure of anther, microsporogenesis and pollen grains. Calculation of pollen viability percentage using in vitro pollen germination techniques.
- Structure of ovule and embryo sac development (through slides).
- Study of embryo development in monocots and dicots.
- Vegetative propagation by means of cutting, budding and grafting exercises.
- Study of seed germination.
- Field study for identification, collection and preservation of plant material.
- Preparation of herbarium.
- Study of flora, monographs, icons, manuals and indexes.
- Study of the following plants (any one from each family)
 - Ranunculaceae: Ranunculus, Delphinium
 - Brassicaceae: Brassica, Iberis
 - Malvaceae: Hibiscus, Althea, Abutilon
 - Rutaceae: Murraya, Citrus
 - Papilionaceae: Pisum, Lathyrus
 - Ceasalpiniaceae: Bauhinia, Cassia
 - Mimosaceae: Acacia, Mimosa
 - Apiceae: Coriandrum, Foeniculum
 - Asteraceae: Helianthus, Tridex, Sonchus
 - Apocyanaceae: Nerium, Catharanthus, Tabernaemontana, Thevetia
 - Asclepiadaceae: Calotropis
 - Solanaceae: Solanum, Cestrum, Datura, Petunia
 - Acanthaceae: Adhatoda, Peristrophe
 - Lamiaceae: Ocimum, Salvia
 - Euphorbiaceae: Euphorbia, Phyllanthus, Ricinus
 - Liliaceae: Asphodelus, Asparagus
 - Poaceae: Avena, Hordeum, Triticum, Zea, Sorghum
- Economic Botany
B.Sc. Semester V
PAPER I
BOT 501: Plant Physiology and Metabolism

Objectives: The course aims to study the vital and the various metabolic activities in plants.

Credits: 3
Contact Hours/ Semester: 45
Marks: 100
(C.A30%; S.E.E 70%)

Unit-I
Plant-Water relations: Plants and water, diffusion and osmosis, ascent of sap, apoplast and symplast concept, transpiration, guttation, significance of transpiration, stomatal structure, water stress and ABA.
Mineral nutrition: Role of micro and macro elements, mineral uptake, deficiency and toxicity symptoms, hydroponics.

(10 Hours)

Unit-II
Nitrogen metabolism: N₂ cycle, mechanism, biology and chemistry of nitrogen fixation, Importance of nitrate reductase and its regulation, Root nodulation, Nod factor, nif and nod genes, asymbiotic N₂ fixation, ammonia assimilation

(10 Hours)

Unit-III
Photosynthesis: Chloroplast structure, Photosynthetic pigments, action spectra and enhancement effects, concepts of two photosystems, photophosphorylation, Calvin cycle, C₄ pathway, CAM plants, photorespiration.

(10 Hours)

Unit-IV
Respiration: RQ, ATP-the biological energy currency, fermentation, glycolysis, Kreb’s cycle, Electron transport mechanism, oxidative phosphorylation, pentose phosphate pathway.

(5 Hours)

Unit-V
Growth and Development: Plant growth regulators- Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene: biosynthesis, chemistry, mechanism of action and their physiological roles, physiology of flowering: photoperiodism and vernalization, growth movements

(10 Hours)
Essential Books for BOT 501

- Dennis, DT; Turpin, DH; Lefebvre, DD and Layzell (eds.). 1997. Plant Physiology

Suggested Readings

Laboratory Readings

B.Sc. Semester V
Paper II
BOT 502: Plant Biochemistry

Objectives: To study the various biochemical pathways in plants and the structure of various biomolecules.

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%
)

Unit-I
Carbohydrates: Classification, structure and functions of monosaccharides, disaccharides, polysaccharides and glycoproteins including starch, cellulose and pectins.

(9 Hours)

Unit-II
Proteins: Structure of proteins: Primary, Secondary, Tertiary, Quaternary; Simple and conjugated proteins, Synthesis of amino acids by reductive amination, GS-GOGAT system and transamination, stereo-isomeric and amphoteric properties of amino acids

(9 Hours)

Unit-III
Fat metabolism: Saturated and Unsaturated fatty acids, Synthesis of long chain fatty acids; Structure, functions and biosynthesis of lipids, α-oxidation, β-oxidation

(9 Hours)

Unit-IV
Enzymes: Structure and properties, concept of holoenzyme, apoenzyme, coenzyme and cofactors, regulation of enzyme activity, mechanism of action, Factors affecting enzyme activity, enzyme kinetics, Michaelis-Menten equation.

(9 Hours)

Unit-V
Secondary metabolites: Biosynthesis and functions of secondary metabolites with special reference to antioxidants, tannins, coumarins

(9 Hours)
Essential Books for BOT 502

- Buchanan, BB; Gruissem, W and Jones, RL. 2000. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists. Maryland, USA

Suggested Readings

Suggested Laboratory Readings

- University Press. U.K.
B.Sc. Semester V
PAPER III
BOT 503: Practical syllabus based on BOT 501 and 502

Credits: 3
Contact Hours/ Semester: 45

Marks: 100
(C.A30%; S.E.E70%)

Suggested exercises:

- Demonstration of phenomenon of plasmolysis using Rheo discolor leaves.
- Demonstration of phenomenon of osmosis by potato osmoscope.
- Demonstration of phenomenon of imbibition.
- Demonstration of phenomenon of root pressure.
- Demonstration of phenomenon of unequal transpiration in dorsiventral leaves using cobalt chloride paper.
- Measurement of the rate of transpiration using potometers.
- Anatomical study of root nodule depicting symbiotic relationship between nitrogen fixing bacteria and roots of leguminous plants.
- To demonstrate that light, CO\textsubscript{2} and chlorophyll are necessary for photosynthesis.
- To demonstrate that O\textsubscript{2} is evolved during photosynthesis.
- To determine the value of RQ of different respiratory substrates by Ganong’s respiroscope.
- To demonstrate that CO\textsubscript{2} is given out during respiration.
- Measurement of growth by arc auxanometer.
- Phytochemical tests for the following- glucose, starch, proteins, fats, tannins, ascorbic acid and anthocyanins.
- Demonstration of respiratory enzymes- peroxidase, catalase and dehydrogenase in plant tissue samples and measurement of their activities.
B.Sc. Semester VI
PAPER I
BOT 601: Plant Biotechnology

Objectives: To study the tools and techniques of plant biotechnology.

Credit: 3
Marks: 100
Contact Hours/Semester: 45
(C.A30%; S.E.E70%)

UNIT-I
Plant tissue culture-I: Basic aspects of plant tissue culture, Cellular totipotency, cytodifferentiation and organogenesis, micropropagation, somatic embryogenesis, artificial seeds.

(9 Hours)

UNIT-2
Plant tissue culture - II: Isolation and culture of protoplast, anther culture, cybrids, somatic hybridization, somaclonal variations, applications of plant tissue culture, biotransformation, intellectual property rights (IPR)

(9 Hours)

UNIT-3
Genetic engineering: Tools and techniques of recombinant DNA technology, genomic and cDNA library, Marker genes, gene transfer by Agrobacterium, chromosome walking, techniques for gene mapping, transgenesis

(9 Hours)

UNIT-4
Tools and techniques-I: Gel electrophoresis: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE), High performance liquid chromatography (HPLC), Polymerase chain reaction (PCR), Enzyme linked immunosorbent assay (ELISA)

(9 Hours)

UNIT-5
Tools and technique - II: Flow cytometry, confocal microscopy, ultracentrifugation, FISH (Fluorescent in situ hybridization), GISH (Genomic in situ hybridization), SEM (Scanning electron microscopy), TEM (Transmission electron microscopy), mass spectrometry.

(9 Hours)
Essential Books for BOT 601

Suggested Readings

Suggested Laboratory Readings

- Botanical Microtechniques: Principles and Practice-Khasim S.M.
B.Sc. Semester VI
Paper II
BOT 602: Applied Botany

Objectives: To develop an understanding of basic fundamental aspects of Botany.

Credits: 3
Contact Hours/ Semester: 45
Marks: 100
(C.A30%; S.E.E70%)

Unit I
Horticulture: History of horticulture, fundamentals of horticulture, techniques of plant propagation, a brief account of pomology, olericulture, floriculture and ornamental horticulture, viticulture, Applications of tissue culture in horticulture.

(9 Hours)

Unit II
Gardening and Landscaping: Fundamentals of landscape design, principles and styles of landscape design, analysis of garden designs, selection of plants, environmental factors important for plant culture, flower beds, topiary, plant protection- pests, disease and weeds, miscellaneous growing techniques-bonsai, terrariums, pot culture, hydroponics etc.

(9 Hours)

Unit III
Garden Management: Steps of plant culture- planting, pruning, irrigation and machinery, preparation of soil, cost and quality of different materials, surfacing materials and their effects, garden tools and their accessories, compost pit, vermicomposting and organic farming.

(9 Hours)

Unit IV
Forestry: Sustainable forestry management, socio-economic initiatives in forest management, forests as centers of biodiversity, social forestry.

(9 Hours)

Unit V
Botany in Industry: Brief description of biofuels and biodiesel, plants in cosmetic industry, aroma therapy and flower essence therapy, pharmaceutical industry, phytoremediation, plant indicators.

(9 Hours)
Essential Books for BOT 602
- Complete Gardening in India-KS Gopalaswami Iengar
- Firminger’s Manual of Gardening in India- Firminger
- Groves of beauty and plenty
- Beautiful Climbers of India- BP Pal
- Flowering Trees- MS Randhawa
- Vegetables- B Choudhary
- Fruits- Ranjit Singh
- Orchids of India- TK Bose & SK Bhattacharjee
- The Colour Dictionary of Flowers and Plants for Home and Garden- Roy Hay & Patrick M. Synge
- Garden Designing- LH Barley
- Ecotourism- David A. Fennell
- Environmental Impact of Ecotourism- Ralf Buckley
- Ecotourism and Sustainable Development- Martha Honey
- Landscape Design- A Practical Approach
- Great Garden Designs- Tim Newbury
- Books of Indian Trees.- Bhattacharya
- An atlas of major flowering trees in India.-Swaminathan
- Text Book of Botany- A.C.Dutta

Laboratory Readings
- Bendre and Kumar Vol.I Rastogi Publication
- Home Gardening-Pratibha Trivedi
- Applied Botany-P.C.Trivedi
- College Botany Practical Vol. I and II - Santia S.C.
- Gardening in India -Lancaster’s Pericy
B.Sc. Semester VI
PAPER III
BOT 603: Practical based on BOT 601 and 602

Credit: 2
Marks:100
Contact Hours / Semester: 45
(C.A30%; S.E.E70%)

Suggested Exercises:
• Study of laboratory requirements and general techniques of biotechnology.
• Principle and application of the following- Laminar Air Flow, Autoclave and Ultracentrifugation.
• Preparation of different types of tissue culture medias and solutions of nutrients and growth regulators.
• Demonstration of inoculation technique, aseptic transfer of explant, optimizing the conditions for direct/indirect differentiation in different explants to study totipotency, cytodifferentiation and organogenesis.
• Germination of pollen of *Catharanthus roseus* in 10% sucrose solution.
• Demonstration of the technique of protoplast isolation and somatic embryogenesis in *Daucus carota*.
• Demonstration of the technique of anther culture in Datura.
• Demonstration of the technique of gel electrophoresis of bacterial DNA.
• Demonstration of the phenomenon of action of Restriction Endonucleases.
• Field study of various plant forms- climbers, trees, shrubs, orchids, ferns and palms.
• Experimental study of the technique of vegetative propagation-cutting, budding, grafting and air layering etc.
• To study propagation by means of bulbs, corms, tubers, rhizome etc.
• To study different styles of garden design.
• Field visit to understand different patterns of landscape design.
• Preparation of record on local biodiversity.
B.Sc. SEMESTER – V EXAMINATIONS
BOTANY
BOT - 501
(Plant Physiology and Metabolism)

TIME ALLOWED: THREE HOURS
Maximum Marks - 70

Question paper consists of three sections

SECTION A – Consists of 20 compulsory multiple choice questions carrying one mark each.

SECTION B – Consists of 10 compulsory short answers type questions (word limit 50 words) carrying two marks each.

SECTION C – Consists of five questions. Attempt any 3 long essay type questions carrying ten marks each

SECTION A

1. Multiple choice questions.
1 X 20 = 20 Marks.

(i). Who is considered as father of plant physiology:
(a). Theophrastus (b). Straussburger
(c). Stephen Hales (d). Kramer

(ii). Cuticle in plants is:
(a). permeable (b). semi permeable
(c). impermeable (d). selectively permeable

(iii). The most common effect due to heavy metal is:
(a). DNA Damage (b). Chlorophyll destruction
(c). Reduction of lipids (d). Nitrogen metabolism

(iv). Which of these is essential for liberation of Oxygen during light reaction:
(a). chlorine (b). nitrogen
(c). magnesium (d). mangamese

(v). Which of these do not have direct effect on phloem translocation:
(a). light (b). temperature
(c). oxygen (d). CO₂

(vi). The pores in sieve area closes due to deposition of:
(a). R- protein (b). callus
(c). callose (d). lipids

(vii). Nitrogenfixing organisms are known as:

(a). phototrophs (b). diazotrophs
(c). heterotrophs (d). autotrophs

(viii). The substance protecting nitrogen fixing enzymes from destruction by O$_2$ is

(a). haemoglobin (b). leghaemoglobin
(c). globulin (d). none

(ix). Red Drop Effect was given by:

(a). Warburg (b). Emerson
(c). Hill (d). Blackman

(x). Which of these is CAM plant:

(a). cactus (b). maize
(c). sugarcane (d). grass

(xi). Which is called as universal pigment:

(a). Chlorophyll a (b). Chlorophyll b
(c). Chlorophyll c (d). Chlorophyll d

(xii). Membrane of thylakoid is:

(a). one layered (b). two layered
(c). three layered (d). four layered

(xiii). How many molecules of pyruvic acid are formed in glycolysis:

(a). one (b). two
(c). four (d). six

(xiv). What is the product of aerobic respiration:

(a). CO$_2$ (b). water
(c). energy (d). all the above

(xv). Out of fat and carbohydrate which gives more energy, on equal weight basis:

(a). carbohydrate (b). fat
(c). both (d). none

(xvi). What is the location of PPP of respiration:

(a). cytoplasm (b). mitochondria
(c). matrix (d). ribosome

(xvii). The hormone produced during water stress is:

(a). Ethylene (b). Auxin
(c). ABA (d). Cytokinin

(xviii). Which of these has minimum auxin:

(a). coleoptile (b). lateral bud
(c). root apex (d). shoot apex

(xix). Which of the light is effective in activating Pr:

(a). red (b). infrared
(c). UV (d). blue

(xx). Hormone used for fruit ripening is:

(a). Coumarin (b). Auxin
(c). Cytokinin (d). Ethylene

SECTION B

2 x 10 = 20 Marks

2. Write a note on fermentation.
3. What is water potential?.
4. What is apoplast and symplast?.
5. What are the events in root nodulation?.
6. Explain the role of carotenoids in photosynthesis.
7. Give the types of C4 plants.
8. Why is RQ of carbohydrates unity?.
9. What do you mean by bioassay? Give the most common bioassay of auxins.
10. What do you mean by phloem loading?.
11. Explain the role of cytokinin in preventing senescence..

SECTION C

10 x 3 = 30 Marks
12. Define OT, TP, WP and DPD. What is their relationship in plant cell?
13. Discuss factors affecting respiration.
14. Write short notes on:
 (a) Nitrogenase complex
 (b) Munch Hypothesis.
15. Explain the mechanism of auxin action.
16. Describe Calvin cycle.
B.Sc. SEMESTER – V EXAMINATION
BOTANY
BOT - 502
(Plant Biochemistry)
TIME ALLOWED: THREE HOURS
Maximum Marks - 70

Question paper consists of three sections

SECTION A – Consists of 20 compulsory multiple choice questions carrying one mark each.

SECTION B – Consists of 10 compulsory short answers type questions (word limit 50 words) carrying two marks each.

SECTION C – Consists of five questions. Attempt any 3 long essay type questions carrying ten marks each

SECTION A

1. Multiple choice questions. 1x20 = 20 Marks.

(i). Who proposed induced fit theory:
(a). Woods (b). Phillips
(c). Fisher (d). Koshland

(ii). What are Apoenzymes:
(a). Amino acids (b). Vitamin
(c). Carbohydrates (d). Proteins

(iii). The enzymes which was crystallized first :
(a). Urease (b). Insulin
(c). Zymase (d). Diatas

(iv). Which of the followinbg is a non competitive inhibitor:
(a). PAB (b). Malonic Acid
(c). Cyanide (d). Sulpha drugs

(v). Lipids without fatty acids are :
(a). conjugated lipids (b). derieved lipids
(c). non saponifiable lipids (d). simple lipids
(vi). Who discovered oxidation pathway:

(a). Knop (b). Koop
(c). Robert (d). Smith

(vii). The product of α-oxidation is:

(a). CO2 (b). Acetyl CoA
(c). Melonyl Co A (d). None

(viii). Conjugated lipids have only:

(a). Saturated Fatty acid (b). Unsaturated fatty acid
(c). Fatty acid and other groups (d). none

(ix). The organelle in which fat is stored is:

(a). glyoxisomes (b). peroxisomes
(c). oleosomes (d). lysosomes

(x). Basic unit of cellulose:

(a). glucose (b).galactose
(c). lactose (d). fructose

(xi). In animals, carbohydrate is stored in form:

(a). glycogen (b). starch
(c). cellulose (d). chitin

(xii). In furanose form of fructose a bond is formed between:

(a). C1-C2 (b). C5-C2
(c). C1-C4 (d). None

(xiii). Fungal cell wall is made up of polysaccharide:

(a). Celulose (b).Cellobiose
(c). Chitin (d). Peptidoglycan

(xiv). Example of non-protein amino acid:

(a). Histamine (b).Glycine
(c). Tryptophan (d). Glutamine

(xv). Which one of the following is an aromatic amino acid:

(a). Tryptophan (b). Serine
(c). Methionine (d). Glutamic acid
(xvi). Gliadins is a term used for:
(a). Albumin
(b). Globulin
(c). Prolamin
(d). Glutamin

(xvii). Example of Scleroprotein is:
(a). Collagen
(b). Chitin
(c). Albumin
(d). Chromoprotein

(xviii). The secondary metabolite used against fungal pathogen is:
(a). Coumarin
(b). Lignin
(c). Tannin
(d). Alkaloid

(xix). Secondary metabolite obtained from Catharanthus:
(a). Pyrethrins
(b). Flavanoids
(c). Vinblastin
(d). Ajamalin

(xx). The secondary metabolite with benzopyronic structure is:
(a). Coumarin
(b). Lignin
(c). Alkaloids
(d). Tannin

SECTION B

2 x 10 = 20 Marks

2. Write a short note on Lock and Key hypothesis.
3. What do you mean by enzyme inhibition.
4. What is the importance of Lipoprotein.
5. Give the chemical nature of lipids.
6. Differentiate between Amylose and Amylopectin.
7. Name five commercial carbohydrate products.
8. Describe briefly Zwitter ion.
9. Write note on conjugated protein.
10. What do you mean by secondary metabolite.
11. Name three antioxidants used in pharmaceutical industry.
13. Discuss briefly about β oxidation of fatty acids.
15. Explain the secondary structure of proteins.